
Communicating on Security within Software Development Issue Tracking

Léon McGregor
Heriot-Watt University

lm356@hw.ac.uk

Manuel Maarek
Heriot-Watt University
M.Maarek@hw.ac.uk

Hans-Wolfgang Loidl
Heriot-Watt University
H.W.Loidl@hw.ac.uk

Abstract
During software development, balancing security and non se-
curity issues is challenging. We focus on security awareness
and approaches taken by non-security experts using software
development issue trackers when considering security. We
first analyse interfaces from prominent issue trackers to see
how they support security communication and how they inte-
grate security scoring. Then, we investigate through a small
scale user study what criteria developers take when prioritis-
ing issues, in particular observing their attitudes to security.

We find projects make reference to CVSS summaries (Com-
mon Vulnerability Scoring System), often alongside CVE
reports (Common Vulnerabilities and Exposures), but issue
trackers do not often have interfaces designed for this. Users
in our study were not comfortable with CVSS analysis, though
were able to reason in a manner compatible with CVSS. De-
tailed explanations and advice were seen as helpful in making
security decisions. This suggests that adding improvements
to communication through CVSS-like questioning in issue
tracking software can elicit better security interactions.

1 Introduction

Discrepancies exist between what security experts desire and
the guidance developers end up following [10], so building
better security practices into software development is key for
exposing security to non-experts. Modern Development Op-
erations (DevOps) processes, streamline tracking and imple-
menting features, bug fixes, and management of issues arising
in software development [17]. A key concern for security is

Copyright is held by the author/owner. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is granted
without fee.
USENIX Symposium on Usable Privacy and Security (SOUPS) 2023.
August 6–8, 2023, Anaheim, CA, USA

whether, amongst the many DevOps security practices [16],
processes include prioritising reported security issues. Priori-
tisation of issues during development is an important step,
as it dictates the approach that a whole project will take to-
wards developing their product. Priority tensions in a project
mean that many different aspects will compete for priority,
and have an impact on developer’s approaches to security
and analytical thinking. “Consideration of revenue is rational”
for developers to prioritise [4], so care is needed to balance
security against functional requirements. In order for an appli-
cation to be secure, security issues ought to get a high priority.
Making this decision well requires project members to be
informed on security risks and to be involved in the decision
making process, beyond just the security experts.

Investigating whether tools used during DevOps do en-
able security is important as there are many factors that im-
pact adoption [18]. DevOps must also enable security pro-
fessionals to use “communication and methods by which
[non-security developers] already share knowledge as part of
their workflow” [2]. When considering security, communica-
tion and management during development are key aspects to
improving security motivation [3]. There is a need to investi-
gate if DevOps processes and tools encourage good security
among non-security experts.

Our investigation is twofold. First, we survey the design
and security approaches within large projects which track is-
sues openly (Section 2). Then, we conduct a developer study
observing non-security experts approaches to security prioriti-
sation of issues and perception of the role of CVSS (Common
Vulnerability Scoring System) [5] as a security analysis sys-
tem (Section 3). We frame our work around the following
research questions.

RQ1 How do software development issue tracking systems
integrate security considerations?
RQ2 Does prompting for CVSS during issue management
have the potential to be a useful interaction?
RQ3 How can non-security experts better engage with secu-
rity during project issue management?



Contributions Our survey covers four large open software
development issue trackers and their usage in openly tracked
projects (Section 2 details our selection criteria). Then we
run a developer study investigating how non-security-experts
make security decisions. Four participants engaged, making
it a scale small investigation, but we nevertheless draw the
following preliminary findings which form the main contri-
butions of this paper. 1) Existing software development issue
tracking tools lack the design to fully convey security con-
cerns. 2) Non-experts seem not comfortable with using CVSS
analysis. 3) However, CVSS seems to be considered helpful
by a non-security expert/experienced project manager to pri-
oritise security-impacting issues. 4) Security inquiry through
questioning and sharing advice could make security more
accessible to non-experts. 5) Security related metadata could
be integrated into issue trackers, elicited by text answers to
security questions, or optionally CVSS scores.

Security classifications and scoring Numerous methods
have been adopted across the security industry to help clas-
sify the impact of security flaws. CWE identifiers (Common
Weakness Enumeration) [12] represent common classes of
bug with similar behaviours. They can be assigned to a bug to
better describe what the problem is in relation to others. CVE
identifiers (Common Vulnerabilities and Exposures) [11] are
assigned to specific cases of flaws and uniquely identify a
single case of a security vulnerability or exposure of a sen-
sitive system. CVSS scores are values given to a reported
vulnerability, calculated by measuring the impact of a secu-
rity flaw across several dimensions. CVE records contain
CVSS analysis, and many CVE records reference CWE clas-
sifications. CVSS analysis can either be shared as a score
between 0 and 10 (most severe) or as a string which encodes
all of the individual components of the scoring metrics, allow-
ing individuals to see precisely what the risks are. CVSS is a
method of measuring the severity of a security issue, and is
often attached to a specific CVE, though there is nothing that
precludes it being used outside of CVE only. Some research
suggests there is significant disagreement amongst security
experts over the individual scores that might be generated
through CVSS [7], however there are findings suggesting that
in general the CVSS scores produced by databases are trust-
worthy [9]. This tension suggests that these scoring mecha-
nisms are worth investigating further, particularly with respect
to non-security experts. There exist other classification and
scoring systems, such as CWSS scoring system [13], similar
to CVSS, but not focused on specific security incidents. We
focus on CVSS as it was specifically designed to emphasise
and rank which bugs should be prioritised for patching [14].

2 Issue Tracker Survey

To answer our research questions we investigate the design
characteristics and security approaches of platforms, before

we conduct a developer study investigating developer ap-
proaches within issue trackers. In this section, we investigate
issue tracking tools in order to see how well they integrate
and promote security. We have decided to analyse the public
facing instances of issue trackers for projects run by the same
groups that created the bug trackers, assuming that these devel-
opers would be the most likely to fully utilise the capabilities
of their issue tracking tools. Note that we are not focused on
performing in-depth ethnographic analysis of these projects,
but simply interested to see how they publicly use their own
issue tracking platforms in relation to security. Platforms
referenced here were accessed in July 2022.

Investigation steps Our investigation followed steps for
each issue tracker: 1) Explore and identify all the interface
elements, 2) Find security issues reported within the project
and observe interesting interactions, 3) Find mentions of CVE,
CVSS, CWE, or discussion relating to security choices.

Interface exploration involved identifying common and
differing interface elements on the individual bug/issue pages
and seeing whether the projects made use of these available
elements. Security issues needed to be located by a broad
search for “security” in body text or labelling and identifying
how particular project demarcates security issues, then doing
a deeper investigation on terms such as “CVE” or “CVSS”.

Selection criteria There are many DevOps, issue tracking,
and project management tools, so we narrowed down to a
specific subset with publicly visible trackers to allow for the
focused analysis detailed above. We selected projects and
tracking systems when the system would 1) Track issues
in a software development project, 2) Not require a special
plugin or extension, 3) Have a public tracker used by the
manufacturers, 4) Serve large projects.

We settled on the following 4 issue trackers: Bugzilla (Fire-
fox Web Browser), Monorail (Chrome Web Browser), Jira
(Atlassian DevOps Tools), GitLab. Among other major open
systems, we discarded GitHub as it does have one central bug
tracking system, and Linux Kernel development as it relies on
mailing lists which are out of scope of this review. We note
other platforms (Trac, Redmine) met the criteria but these
were not selected for full investigation.

2.1 Investigation
Bugzilla Bugzilla is a bug tracker developed by Mozilla for
use with developing the Firefox browser. Within the Firefox
project, the project uses all of the fields that are available in
the interface. In addition, Bugzilla allows site administrators
to add custom fields and properties if the project managers
feel they would benefit from it W.

Bugzilla does not include any built-in support for tracking
or measuring CVSS scores, but there are cases where bug
report participants have included comments that reference
CVSS scores. From searching the Firefox Bugzilla instance

https://bugzilla.readthedocs.io/en/5.0.4/administering/custom-fields.html


for references to CVSS, we find that most of the bugs that
include a CVSS score are CVEs which have been copied to
the Mozilla-run bug tracker from other sources. Bug 1246014
is a good example of this. Coming via email from an external
security investigator, the CVSS and related analysis needs to
be included in a comment to the bug, as there is no standard
field in the UI to place it.

We see that when a CVE is reported, it will include a CVSS
score, describing the severity of the bug. In this case the bug
was given a keyword, “sec-critical”, as a way of tracking the
severity. What is interesting in this case is that the dedicated
fields for bug priority and severity were not changed. This be-
haviour is seen in other CVEs reported to the Mozilla tracker
in this fashion, including Bug 814001 and Bug 805121. Some
CVEs reported as bugs do however get the relevant fields set
in addition to a priority keyword, including Bug 1274637
and Bug 1631618. Outside of CVE and CVSS related bugs,
keywords, severity and priorities are used to keep track of
bugs, as can be seen in Bug 1538007. It is unclear just from
these observations if there is a consistent or formal procedure
that Mozilla has for assigning security priorities in their bug
tracker, but it does indicate that a standardised interface that
can keep track of CVSS scores in addition to or in place of
many separate labels might be useful.

By performing a broad search across the entire bug tracker
for mentions of CVSS excepting when used to describe CVEs,
we find that no bugs use CVSS scores despite the intended
use of CVSS as a means of analysing security bugs.

Monorail Monorail is a bug tracker developed by Google,
for use in developing Chrome, the world’s largest web browser.
One differentiating aspect to Bugzilla issue tracking is the
use of labels to track different aspects, rather than using indi-
vidual fields W. Labels can be related using dashes - as an
alternative to defining specific fields, such as Target-102,
which indicates that the team aims to resolve an issue by the
time version 102 is released. This scoped labelling approach
might offer more autonomy for individual project members
to categorise and prioritise issues than having to rely on a
project administrator to add specific fields. This capability is
used frequently within the Chrome project.

Searching for CVSS scores W given in bugs reported in
the Chromium project tracker reveals a similar pattern to that
found in the Mozilla tracker. Comments and descriptions of
bugs only tend to mention CVSS scores when they were orig-
inally formed as CVEs, cross-posted to the public tracker. An
illustrative example is found in Bug 1313172. The interface
includes a priority field, but in contrast no severity field, and
instead severity labels are used. Monorail does not have a
built-in CVSS field or method to track this so when required
the comments section has to be used to display CVSS scores.

The Chrome project has over 1000 bugs referencing CVSS,
but only 2 confirmed bugs that reference CVSS scores with-
out also mentioning CVE W. These are Bug 571480 and

Bug 695474. Both have a priority, but only the first has a se-
curity severity label. This may indicate that there may either
be limited utility or a lack of recognition of these metrics
outside of the context of CVE reporting.

Jira Jira is a bug tracker created by Atlassian. It is used
by many projects including MongoDB and Qt. Atlassian use
Jira as their public facing issue tracker for their own products,
which we analyse here. In a Jira issue many fields, prop-
erties, and links are present similar to other issue trackers.
Jira also allows Jira administrators to change the fields avail-
able W. In the open source project Qt, we see that their
issue tracker only has the default fields, and so is missing
the “severity” fields present in Atlassian’s Jira instance (seen
in Bug QTBUG-105931). This approach means that different
projects may approach security in different ways, depending
on how they have configured their setup.

Within Atlassian’s public issue tracker there are references
to CVSS scores within the comments of bugs W. It is in-
teresting that many of the CVSS scores are all presented in
the same way, through a table in comments, yet Jira’s custom
fields are not used to standardise this. We see this presentation
added by a ‘bot’ in Bug JRASERVER-71198, indicating desire
for some kind of automation for collecting this data. All the
comments in this fashion include a link to an Atlassian CVSS
Calculator W to explain the severity rating. The CVSS scores
seem to come from CVE notifications which state it “is an
independent assessment and you should evaluate its applica-
bility to your own IT environment.” Whether this phrase is
included as a way to instruct the community reading these
bugs to be alert, or simply as a form of legal disclaimer is
unclear. CVSS scores are not limited to just CVE reports,
but also appear in 122 issues unrelated to CVE, indicating
that CVSS identifications bear some importance to the Jira
project. Tracking security is an important part of Atlassian
bugs, across their projects 6646 bugs are related in some way
to security, even excluding CVE W.

While researching which open source projects use Jira,
we found MongoDB recommends voting as a way to gauge
community priorities for fixing some issue. This is an insight
that the addition of a “voting” property may be incentivising
projects to use it as a way to decide priorities collectively.

GitLab GitLab targets the whole DevOps process, includ-
ing issue tracking. GitLab is open source and the development
team use their own project to track issues.

GitLab’s tracker shows many bugs mentioning CVSS with-
out an associated CVE report. There is a GitLab Bug 218601
which is a proposal to standardise the way GitLab tracks
CVSS scores, notably suggesting “scoring can then be ex-
posed to the user in relevant parts of the UI”. GitLab’s hand-
book describes that priorities and severity can be assigned
based on the CVSS scores that are generated W. The hand-

https://bugzilla.mozilla.org/show_bug.cgi?id=1246014
https://bugzilla.mozilla.org/show_bug.cgi?id=814001
https://bugzilla.mozilla.org/show_bug.cgi?id=805121
https://bugzilla.mozilla.org/show_bug.cgi?id=1274637
https://bugzilla.mozilla.org/show_bug.cgi?id=1631618
https://bugzilla.mozilla.org/show_bug.cgi?id=1538007
https://chromium.googlesource.com/infra/infra/+/main/appengine/monorail/doc/userguide/concepts.md#Issue-fields-and-labels
https://bugs.chromium.org/p/chromium/issues/list?q=cvss&can=1
https://bugs.chromium.org/p/chromium/issues/detail?id=1313172
https://bugs.chromium.org/p/chromium/issues/list?q=cvss%20-cve&can=1
https://bugs.chromium.org/p/chromium/issues/detail?id=571480
https://bugs.chromium.org/p/chromium/issues/detail?id=695474
https://support.atlassian.com/jira-cloud-administration/docs/create-a-custom-field/
https://bugreports.qt.io/browse/QTBUG-105931
https://jira.atlassian.com/issues/?jql=issuetype%20%3D%20Bug%20AND%20text%20~%20%22cvss%22%20AND%20summary%20!~%20%22CVE%22%20ORDER%20BY%20updated
https://jira.atlassian.com/browse/JRASERVER-71198
https://asecurityteam.bitbucket.io/cvss_v3/
https://jira.atlassian.com/issues/?jql=issuetype%20%3D%20Bug%20AND%20resolution%20in%20(Unresolved%2C%20Fixed%2C%20Deployed%2C%20Done)%20AND%20text%20~%20security%20AND%20summary%20!~%20CVE%20ORDER%20BY%20votes%20DESC
https://gitlab.com/gitlab-org/gitlab/-/issues/218601
https://about.gitlab.com/handbook/engineering/security/threat-management/vulnerability-management/


book also suggests that issues with high CVSS scores ought to
be labelled as high priority and be mitigated within 24 hours.

For individual projects, GitLab’s issue tracking interface
does have a weight field. However, the concrete meaning of
this field is not defined and could change project to project.
From GitLab’s documentation W, it could refer to any of

“how much time, value, or complexity a given issue has or costs.”
This is still an important metric when it comes to prioritisation,
however it is not clear if it alone can be leveraged or relied
on to handle the priorities of security issues.

GitLab already has a CVSS calculator W, but it is not
used for generating scores to prioritise issues. Instead it is
for defining the “bounty” to be rewarded for certain bugs.
When issues are reported through the bounty program, the
CVSS scores generated as part of the reporting are converted
to priority and severity indicated through labelling. In some
cases the CVSS scores, though used as part of reporting, are
not linked on the issue page itself. Instead developers need to
navigate to a separate page to view it. An example of this can
be see in Bug 336535: Severity is set as per CVSS calculated
on hackerone report. Not presenting this inline could add to
developer workload. Designing an interface that can present
this information could improve issue prioritisation to draw
developer attention to more severe issues. Other bugs, such
as Bug 360986, include basic information of the final CVSS
score, and link to more detailed reports again held elsewhere.

GitLab’s development team currently tracks CWEs, and
other weakness and classifications through labels. GitLab’s
team use scoped labels, which allows all CWEs of a specific
type to be grouped together W. An open GitLab Bug 300978
is an issue discussing a proposal of whether to adopt CWEs as
a means of tracking and codifying security issues in GitLab’s
Secure group. The evidence of interest in CWE and CVSS
indicates intent from GitLab to include more support for these
security vulnerability classification systems.

2.2 Comparison and summary

Table 1 compares the available features focusing on non-
security specific features as none of the investigated issue
trackers include dedicated space to discuss security specific
concerns. We see that many features are shared amongst the
issue trackers. There are some outliers. GitLab seems to offer
as many capabilities as is possible. Where certain features are
not present, many projects using these systems utilise labels or
keywords as a means of tracking certain properties of issues.
Only GitLab has a ‘weight’ field, however its use might be
duplicated by severity or estimated completion times in other
tracking systems. Most of the tracking systems make use of
colour to draw attention to certain features, with Bugzilla
highlighting important issues in red when in list view, to
GitLab which uses very colourful labels, chosen by project
organisers. Some bug tracking systems have built-in priority
tracking fields for their bugs, and every bug tracking system

Table 1: Comparison of metadata fields across platforms

Field Bug
zil

la

M
on

ora
il

Jir
a

GitL
ab

Priority • • • ◦
Severity • ◦ • ◦
Weight •
Votes • •
Scoped Labels • •
Milestones • ◦ • •
Estimated Completion Times • •
Epics ◦ • •
Colours • • •
Custom Fields • ◦ •
CWE ◦

Native to all: Title and Description, Timestamps, Compo-
nent Hierarchy, Issue types, Labels, Attachments, Related
Issues, Confirmation and Resolution, Project Member Links
Metadata support: native fields (•), possible with labels (◦)

has some form of keyword or labelling fields. Developers
often seem to use labelling as a means of tracking severity,
suggesting labels may be a more usable interface element.
The use of labelling varies between development projects.

The contrast between Bugzilla and Monorail is interesting
when considering severity labelling. Both Bugzilla and Jira
include severity fields, others use labels. But Firefox develop-
ment includes a specific keyword despite Bugzilla having a
severity field, and Chrome development uses a severity label
as an alternative to a severity field. This indicates different
approaches in how strictly severity is assigned, and that one
single approach is perhaps not suitable for all projects.

The GitLab project tracks certain weaknesses classified by
CWE through scoped labelling. CVSS scores are mentioned
within bug tracking for open source projects, often in relation
to externally reported issues such as through CVEs or bug
bounties. The CVSS scores appear within the text of the dis-
cussion of the bug, instead of alongside the labels or fields that
describe severity and priority. This could indicate that though
there is a desire for CVSS when discussing critical security
bugs like CVEs, the bug tracker interfaces do not leverage
CVSS at all for other kinds of reported security issues, and
offer little support for CVSS when they are used. Note that
CVSS targets reported vulnerabilities and might not suit all
security planning discussions.

In summary, the selected DevOps issue trackers have many
commonalities, but also a few differences. We see wide vari-
ation in the approaches taken to labelling, handling severity,
and handling references to security issues and reports. Exter-
nal metrics and classifications are used, but interface support
for referencing these is missing, and interfaces offer no auto-
mated support for making decisions based on such metrics.

https://docs.gitlab.com/ee/user/project/issues/issue_weight.html
https://gitlab-com.gitlab.io/gl-security/appsec/cvss-calculator/
https://gitlab.com/gitlab-org/gitlab/-/issues/336535
https://gitlab.com/gitlab-org/gitlab/-/issues/360986
https://gitlab.com/gitlab-org/gitlab/-/labels?subscribed=&search=weakness
https://gitlab.com/gitlab-org/gitlab/-/issues/300978


3 Developer Study

After investigating how trackers support security, we focus
on how users themselves make security decisions through our
developer study. The purpose of this study is to investigate
approaches that non-security-experts take when analysing and
prioritising security issues. We examine whether techniques
like CVSS analysis are useful, and what parts of an issue
presentation impact most. This study is conducted online with
non-security-expert developers and project managers.

3.1 Protocol

The participants will be placed in a fictional setting, a soft-
ware development company developing financial applications.
When presented with issues, the participant are asked to con-
sider each one, then assign a priority to it, relative to the others,
and answer questions about CVSS scoring. All participants
see the same issues, but in a random order. The prioritisation
will be a scale where the top issue needs to be dealt with
first, and both security and business-critical issues are rated
together, to simulate the prioritisation stresses faced in a real
environment. To incur some amount of time pressure to simu-
late a working environment, but allow for enough time to have
a reasonable attempt at seeing and briefly investigating all of
the issues, we allocate participants 30 minutes followed by
however long needed to answer a final questionnaire. Partici-
pants were awarded online vouchers for their time regardless
if they completed the experiment. Our protocol was reviewed
and approved by our university’s ethical committee.

Issues We add 14 issues to a tracker. 7 issues each focused
on security and functionality. The security issues were created
by looking at top Mitre issues W, with a corresponding entry
in the find-sec-bugs library W. The functionality issues
were created by considering what a financial app would need
to offer, and potential requirements that may be faulty. For
example, one issue concerned “Improper input validation”,
with consideration to security and CWE-20. During the exper-
iment issues are not explicitly named as being security issues
or not. For each of these issues, the following is given: a title,
a description, and a code snippet. The issues were designed to
include all the information relevant to the business, and which
would allow for full CVSS analysis. When prioritising these
issues, there will be security and functionality considerations
for all, however some issues will be more or less security
critical or business critical.

Experiment platform For this experiment, we worked
with a customised GitLab server. We chose GitLab as an
easily self-hostable DevOps platform we could customise
for our experiment. We added custom questionnaires to this
server: an easy-to-use drag and drop interface for choosing
relative priorities, and a questionnaire shown next to issues
with CVSS and other questions (shown in Figure 1). These
are shown as an overlay so that the primary activity of issue

Figure 1: Screenshot of the issue questionnaire interface

analysis is always present. The drag and drop interface en-
sures that all of the prioritisation was conducted in a relative
fashion forcing a choice and preventing giving the same pri-
ority to issues. Although we build on the GitLab interface for
our study, we are exploring the approaches developers take
generally rather than specifically in a GitLab context.

3.2 Developer Study Outcomes
Here we present the outcomes from our developer study. We
recruited 10 participants from computer science alumni, all
of whom consented to take part. 4 started and completed the
experiment, and all of these participants identified as male.
We recruited a balance of project managers and software
developers, 2 participants identifying expertise in each. None
of the participants felt their expertise in security was strong.
We name the less experienced participants SD1, SD2, PM1, and
one project manager with more experience PME.

Approaching prioritisation We viewed participants’ ap-
proaches to choosing priorities through logged behaviour. 3
participants looked at most of the issues when making their
prioritisations, while PM1 only looked at the details of 3 issues.
SD1 and SD2 changed their prioritisation as they read

through the issues, and PME preferred to make multiple priori-
tisations at once. PM1, who did not look at many issues, did
not change the priorities from the default random order, so
we cannot draw concrete conclusions for that participant’s
priorities. SD1, SD2, and PM1 on average changed 13 issue
priorities from the initial random assignment, which suggests
they did engage well in this activity.

Looking at the final priorities chosen, we can see some
trends. There was agreement that “CSRF or Referrer Missing”,
“SQL Injection”, “Input Validation” were the most important
as they appeared in the top 5 highest priorities; “Adding and
remembering payees” and “Chequing” and “Currency con-
verter” were all placed in the lowest 4 priorities; “Download-
ing PDF Summaries” was the lowest priority issue. This is
interesting to see as it suggests, from our population sample,

https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html
https://find-sec-bugs.github.io/bugs.htm


that they want to rate security issues higher than non-security
ones. Participants never contacted each other yet chose similar
priorities.

Usefulness of CVSS PME, SD2, and PM1 attempted to gener-
ate CVSS scores for some issues. We asked how comfortable
participants felt using GitLab, choosing priorities, and com-
pleting the tasks. Responses showed mixed responses with no
clear trends across participant demographics. Only PME felt
comfortable with CVSS. The participants showed evidence of
critical security thinking, identifying where there were some
security issues, but suggested due to them not being readily
exploitable, they could be de-prioritised. When asked about
the SSL issue, PME stated “[it] is serious but is not obvious or
easy to exploit so it is not as important,” and on an SQL Injec-
tion issue, SD1 comments “[issues] that have the potential for
data leaks, is given highest priority”. Analyses like the ease
of exploitation and impact on confidentiality are captured in
CVSS, so standardised questioning like used in CVSS could
be a useful way to discuss issues amongst developers. PME’s
comment about risk mirrors the view that CVSS is concerned
with the severity over risk [15], and, in that sense, a framing
of CVSS that better indicates context may be helpful.

Engaging with security Participants feel there should be
collective responsibility for security. SD1 suggests “A sorted
list of developer/security analysts etc. . . so i would know who
to ping for” is useful for issue tracking, to expedite seeking
advice or guidance. PM1 suggests employing “a dedicated
cyber team to review and ensure best practice”.

During the per-issue questions, we asked participants what
aspect of an issue was most influential to their choice of pri-
ority. PME and SD2 gave an explanation for every issue, and
SD1 gave explanations for the 6 issues they prioritised highest.
SD2 and PME, a software developer and a project manager,
favoured ‘advice given’ and ‘legal impact’, respectively. The
most common aspect impacting a decision was when a fel-
low staffer in the scenario gave advice explaining how an
attack worked. This is also backed up by one comment that
mentioned that “links” to standards are an important part of
prioritising an issue. This suggests the importance of com-
munication between a team and utilising relevant knowledge.
The next biggest impact is when there may be a legal impact
to the business. GDPR and “privacy laws” were specifically
mentioned within this aspect. Potentially we may see more
priority given to security if laws surrounding secure program-
ming and secure delivery of services are known. The third
biggest impact is when there is either an impact to customers,
or a need to weigh between commercial and security critical
interests. PME described this tension in a comment on an issue
saying “this is a commercial issue but not a critical issue,”
and gave it a low priority, showing that even in the face of
business, they felt security was more important. Encouraging
more dialogue in the form of advice from relevant parties
during issue analysis, taking into account tradeoffs required
between commercial and security interests, could help less

experienced developers better engage with security decisions.

4 Discussion and Conclusion

We discuss our findings according to our 3 research questions.
RQ1: How do software development issue tracking sys-
tems integrate security considerations? We see many large
software projects reference security analyses in issues re-
ported to their trackers. Vulnerabilities like CVEs are often
included in the body or comment of a report, CVSS scores are
likewise pasted into comments, and labels are used to track
the classification according to external sources like CWE
classes. Despite the apparent desire to reference such security
measurements and analyses, basic issue tracking interfaces
do not offer any built-in fields to support security metadata,
with projects like Atlassian opting for a bot to add security
information in Jira.
RQ2: Does prompting for CVSS have the potential to be
a useful interaction? In the parts of the experiment where
we analyse CVSS we find mixed evidence that it could be a
useful addition. Participants were able to identify the tensions
between prioritising security and functional interests. They
gave comments that mirror the approach taken by CVSS for
conducting analysis. When directly asked if they felt comfort-
able with CVSS, only 1 out of 4 participants felt comfortable,
so this could suggest that CVSS alone may not be suitable
or would require training to increase confidence before use.
Though our sample size is low, the fact that our more experi-
enced project manager participant felt most comfortable with
CVSS could suggest that more experienced roles are more
suited to using CVSS for prioritisation, or that CVSS is more
relevant to such roles by potentially helping them liaise with
software developers who actually handle the issues. There is
evidence from prior study that giving additional advice during
CVSS analysis helps to provide more accurate scoring [1],
so any future CVSS integration should come with guidance.
Alternatives such as the Exploit Prediction Scoring System
(EPSS) W [8] are explored to better suit proactive security
analysis (EPSS was in early release when our project started).
RQ3: How can non-security experts better engage with
security during project issue management? Experts can
find the current design of DevOps tools more useful than
less experienced users. Explanations and colour are the most
useful design considerations when displaying important in-
formation for security choices. Related studies into API de-
sign [6] find benefits in involving developers when choosing
such design considerations and this may benefit issue manage-
ment tools also. Developers should be supported with external
knowledge where relevant. To best engage with security dis-
cussions, all experts should offer their advice and context, and
if possible DevOps processes should guide those making pri-
orities towards people best able to give this advice. Combined
with security analysis from CVSS or otherwise, this could
improve security dialogue between team members.

https://www.first.org/epss/


References

[1] Luca Allodi, Sebastian Banescu, Henning Femmer, and
Kristian Beckers. Identifying Relevant Information
Cues for Vulnerability Assessment Using CVSS. In
Proceedings of the Eighth ACM Conference on Data
and Application Security and Privacy, CODASPY ’18,
pages 119–126, New York, NY, USA, March 2018. As-
sociation for Computing Machinery.

[2] Debi Ashenden and Gail Ollis. Putting the Sec in De-
vSecOps: Using Social Practice Theory to Improve Se-
cure Software Development. In New Security Paradigms
Workshop 2020, NSPW ’20, pages 34–44, New York,
NY, USA, October 2020. Association for Computing
Machinery.

[3] Sarah Beecham, Nathan Baddoo, Tracy Hall, Hugh
Robinson, and Helen Sharp. Motivation in Software
Engineering: A systematic literature review. Informa-
tion and Software Technology, 50(9):860–878, August
2008.

[4] Partha Das Chowdhury, Joseph Hallett, Nikhil Patnaik,
Mohammad Tahaei, and Awais Rashid. Developers Are
Neither Enemies Nor Users: They Are Collaborators. In
2021 IEEE Secure Development Conference (SecDev),
pages 47–55, October 2021.

[5] FIRST. CVSS v3.1 Specification Document.
https://www.first.org/cvss/v3.1/specification-
document, 2019.

[6] Peter Leo Gorski, Yasemin Acar, Luigi Lo Iacono, and
Sascha Fahl. Listen to Developers! A Participatory
Design Study on Security Warnings for Cryptographic
APIs. In Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems, CHI ’20, pages
1–13, Honolulu, HI, USA, April 2020. Association for
Computing Machinery.

[7] Hannes Holm and Khalid Khan Afridi. An expert-based
investigation of the Common Vulnerability Scoring Sys-
tem. Computers & Security, 53:18–30, September 2015.

[8] Jay Jacobs, Sasha Romanosky, Octavian Suciu, Ben-
jamin Edwards, and Armin Sarabi. Enhancing vulnera-
bility prioritization: Data-driven exploit predictions with
community-driven insights, 2023.

[9] Pontus Johnson, Robert Lagerström, Mathias Ekstedt,
and Ulrik Franke. Can the Common Vulnerability Scor-
ing System be Trusted? A Bayesian Analysis. IEEE

Transactions on Dependable and Secure Computing,
15(6):1002–1015, November 2018.

[10] Michelle Mazurek. We Are the Experts, and We Are the
Problem: The Security Advice Fiasco. In Proceedings
of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’22, page 7, New York,
NY, USA, November 2022. Association for Computing
Machinery.

[11] MITRE. Overview | CVE.
https://www.cve.org/About/Overview, 1999.

[12] MITRE. CWE - Common Weakness Enumeration.
https://cwe.mitre.org/about/index.html, 2006.

[13] MITRE. CWSS - Common Weakness Scoring System.
https://cwe.mitre.org/cwss/cwss_v1.0.1.html, 2014.

[14] Marcus Pendleton, Richard Garcia-Lebron, Jin-Hee Cho,
and Shouhuai Xu. A Survey on Systems Security Met-
rics. ACM Computing Surveys, 49(4):62:1–62:35, De-
cember 2016.

[15] Jonathan Spring, Eric Hatleback, Allen Householder,
Art Manion, and Deana Shick. Time to Change the
CVSS? IEEE Security & Privacy, 19(2):74–78, March
2021.

[16] Akond Ashfaque Ur Rahman and Laurie Williams. Soft-
ware security in DevOps: Synthesizing practitioners’
perceptions and practices. In Proceedings of the Inter-
national Workshop on Continuous Software Evolution
and Delivery, CSED ’16, pages 70–76, New York, NY,
USA, May 2016. Association for Computing Machin-
ery.

[17] Anna Wiedemann, Nicole Forsgren, Manuel Wiesche,
Heiko Gewald, and Helmut Krcmar. The DevOps
Phenomenon: An executive crash course. Queue,
17(2):Pages 40:93–Pages 40:112, April 2019.

[18] Shundan Xiao, Jim Witschey, and Emerson Murphy-Hill.
Social influences on secure development tool adoption:
Why security tools spread. In Proceedings of the 17th
ACM Conference on Computer Supported Cooperative
Work & Social Computing - CSCW ’14, pages 1095–
1106, Baltimore, Maryland, USA, 2014. ACM Press.


	Introduction
	Issue Tracker Survey
	Investigation
	Comparison and summary

	Developer Study
	Protocol
	Developer Study Outcomes

	Discussion and Conclusion

